°µTV

New Insight Into Why Pierceā€™s Disease Is So Deadly to Grapevines

Research Could Help Diagnose Disease Early and Increase Plant Health

News
Pierce's disease on grapevine leaf
Symptoms of Pierce's disease on a grapevine leaf. (Jack Kelly Clark / UC ANR)

Scientists are gaining a better understanding of Pierceā€™s disease and how it affects grapevines. The disease, which annually costs California more than $100 million, comes from a bacterium called Xylella fastidiosa. While the bacterium has been present in the state for more than 100 years, Pierceā€™s disease became a more serious threat to agriculture with the arrival of the glassy-winged sharpshooter insect, which can carry the bacterium from plant to plant.

In a , published today in researchers at the University of California, Davis, have identified a set of molecular markers that influence the onset of Pierceā€™s disease in grapevines.

ā€œWe now have a very good idea of the plant responses to the disease,ā€ said lead author Paulo Zaini, a postdoctoral researcher in the Department of Plant Sciences at °µTV. ā€œThis will help us in early diagnosis and help us design strategies to protect the plant from damaging itself.ā€

How infection develops

The glassy-winged sharpshooter injects the Xylella fastidiosa bacterium into the plantā€™s xylem, which is the part of the plant that carries water. The disease causes leaves to yellow or ā€œscorch,ā€ eventually drying up and dropping from the vine. It can kill a plant in three to five years. Few diseases can kill grapevines so quickly.

The glassy-winged sharpshooter was first reported in California in 1994 and can travel greater distances than native sharpshooters. By 2002, the glassy-winged sharpshooter had infested more than 1,100 acres of grapevines statewide.

Photo of glassy-winged sharpshooter
Glassy-winged sharpshooter on a leaf. The vector carries Xylella fastidiosa from plant to plant.  (Jack Kelly Clark / UC ANR)

ā€œWhat growers do to stop the bug is just apply insecticides at an increasingly growing rate,ā€ said Zaini. ā€œItā€™s not a sustainable strategy.ā€

In this study the authors looked at the plantā€™s responses to the disease compared to healthy plants. Better understanding the biochemical changes with onset of the disease can help foster new strategies to increase plant health, rather than having to use insecticides to fight disease.

Scientists have long thought the bacteria growing in the xylem blocked the flow of water to the leaves.

ā€œWe thought that the blockage causes a drought stress, but thereā€™s much more to it than that.ā€ said Abhaya Dandekar, professor of plant sciences and the studyā€™s principal investigator. ā€œNot all the vessels are blocked.ā€

The blockage might be part of the problem, but it does not answer all the questions. More than 200 plant species harbor the bacterium but are asymptomatic.

Having identified molecular markers important for Pierceā€™s disease in grapevines, researchers can use them to study grapevine varieties or other plants that do not develop disease.

Co-authors include Hossein Gouran, Sandeep Chakraborty, and My Phu with the °µTV Department of Plant Sciences; Dario Cantu with the °µTV Department of Viticulture and Enology; and Rafael Nascimento and Luiz Goulart with the Institute of Genetics and Biochemistry at the Federal University of Uberlandia in Brazil. 

The study was funded by the California Department of Food and Agriculture Pierceā€™s Disease Board and CAPES, a Brazilian scientific research funding agency.

Media Resources

Amy Quinton, °µTV News and Media Relations, 530-752-9843, amquinton@ucdavis.edu

Primary Category

Secondary Categories

Food & Agriculture Science & Technology

Tags